1-Point Functions for Z2-orbifolds of Lattice VOAs
Algebra and Number Theory Seminar, University of California, Santa Cruz,
Abstract: The Moonshine module, a vertex operator algebra (VOA) linking the Monster group to modular forms via the j-function, has inspired significant research into VOAs and their modular properties. One way to explore and understand the modular properties of VOAs is through their 1-point functions. In this talk, I will present my work on computing the 1-point functions for the $\mathbb{Z}_2$-orbifolds of lattice VOAs. I will begin by introducing the standard Zhu theory, followed by an explanation of how Mason and Mertens developed the $\mathbb{Z}_2$-twisted Zhu theory to compute the 1-point functions in the untwisted sector for symmetrized Heisenberg and lattice VOAs. I will then show how I extended these techniques to perform computations in the twisted sector. This allowed me to derive the 1-point functions for the $\mathbb{Z}_2$-orbifold, which, as expected, are level-one modular forms for the full modular group $SL_2(\mathbb{Z})$, up to a character.